Design Dead Load in Buried Pipe

Existing soil above buried pipe is categorized as external dead load. Unlike truck load which is categorized as live load, soil load is given evenly along buried pipe. Soil load (Figure 1) can be calculated using the following formula:

Pd = g H γs OD

Where:
Pd         = soil load (N/m)
H         = depth of buried pipe in the ground (m)
γS         = density of soil (kg/m3)
OD      = outer diameter of buried pipe (m)

So the total amount of external load is transferred to buried pipes due to soil load (dead load) and truck load (live load) is:

P = P1 + Pd

Where:
P          = total load on buried pipe
Pl         = load truck
Pd         = soil load

As an interpretation of the model loading pipes in the soil with the combination loads, in this case is a truck, it can be seen in Figure 2 below.
Figure 1: Design Dead Load in Buried Pipe
(source: book-Structural Mechanics of Buried Pipes by Reynold KW, Loren RA
Figure 2: Modeling Load on Buried Pipe
(source: book-Structural Mechanics of Buried Pipes by Reynold KW, Loren RA

Design Live Load in Buried Pipe

The external loads in the buried pipe stress analysis that must be considered in calculation are live load and dead load. Live load will always changes according to position or distance, while dead load is not depend on these factors but it is determined by design value of dead load itself.  The examples of design live loads in buried pipe are truck load, car load, train load and the others.

As for example: truck is located above buried pipe or truck across ground area where pipe is buried in it. Truck is modeled as live load so it will add external load to buried pipe. This truck load is vertical load for buried pipe. It is assumed that the truck load is single load (W) above ground as shown in Figure 1 below.
Figure 1: Truck as Live Load on Buried Pipe
(source: book-Structural Mechanics of Buried Pipes by Reynold KW, Loren RA
The amount of truck load that is received by buried pipes at point A (right above pipe) is:

P1 = N W / H2

Where:
Pl         = truck load (N/m2),
W        = single truck load (N)
H         = height of soil above pipe (m)
R         = horizontal distance from the center of pipe to single load (m)
N         = coefficient Boussinesq = (3 (H/R)5) / (2π)

Coefficient value of N can be seen from Figure 2. To know the value of N can use the relationship of R (distance W of center pipe) with H (depth pipe in soil). Then the relationship between R / H with N can be obtained as shown in the chart below.
Figure 2: Relationship of R/H vs N
(source: book-Structural Mechanics of Buried Pipes by Reynold KW, Loren RA

Multiphase Flow

A fluid can flow along pipes which have different shape; fluid flow direction can be divided into four categories, namely: vertical flow, horizontal flow, inclined flow, and directional flow. The direction of inclined and directional flow make angle of inclination between 0 to 90 degrees to horizontal axis. Figure 1 below shows the contribution of each category of flow direction on a production system.
Figure 1: Direction of Flow in a Production System

Vertical and directional flow direction is typically used in pipelines beneath surface, the pipe connecting fluid from reservoir to surface (wellhead) of offshore platform. Once the fluid reaches surface, directions of flow is frequently involved are horizontal and inclined flow direction. The use of flow direction type is closely related in terms of determining the value of changes in pressure along pipe flow.

Multiphase flow in pipes can be defined as the concurrent movement of free gas and liquid in the pipe that can occur in various flow patterns. Gas and liquid can flow as homogeneous mixture, the liquid is at the front with the gas push behind liquid, liquid and gas may flow in parallel, or in various combinations of flow patterns that may occur.

Generally, the pattern of multiphase flow is divided into three types as follow:
  1. Segregated multiphase flow
In the segregated multiphase flow, the flow of gas phase is separated from liquid phase; it means that gas phase can flow above liquid phase or between the flow of liquid phase as shown in Figure 2.
Figure 2: Segregated Multiphase Flow

  1. Intermittent multiphase flow
Flow pattern that can be included in the form of intermittent multiphase flow is the flow of liquid phase which hit the gas phase (Figure 3 bottom side) or the flow of liquid phase inhibit the flow of gas phase (Figure 3 top side).
Figure 3: Intermittent Multiphase Flow


  1. Distributed multiphase flow
The pattern of distributed multiphase flow, gas and liquid phase are dispersed uniformly inside pipe flow, as shown in Figure 4.
Figure 4: Distributed Multiphase Flow

Flow in Pipe Concept

Flow in pipe can consist of single phase flow (gas, oil, or water only) or more which can be called multiphase (gas and liquid). In general, fluid in pipe can flow from an inlet point to outlet point if the pressure at outlet point is smaller than the pressure at inlet point, Pout < Pin (ΔP>0). If the pressure at inlet point is equal to the pressure at outlet point, Pout = Pin (ΔP=0), then fluid flow along pipe will not happen.
Figure 1: Flow in Pipe Concept

Figure 1 is a figure that show pipeline with inlet point consist of three pipe segments, segment 1 with pressure P1 and flow rate Q1 , segment 2 with pressure P2 and flow rate Q2, and segment 3 with pressure P3 and flow rate  Q3. The fluid of three pipe segments will be streamed to a gathering pipe with outlet pressure as Pout and fluid flow rate as Qout. Flow rate Qout shall be the sum of Q1, Q2, and Q3, because the pipeline in Figure 1 is assumed there is not inhibitor there.

If Qout is not summation of three flow rate (Q1, Q2, and Q3), it indicate that there is leak in pipe flow. As was explained earlier that the fluid flows from high pressure to low pressure, so fluid from the third inlet segments will flow into outlet segment if the value of P1, P2, and P3 respectively is greater than Pout.

A case that could possibly occur on the fluid in pipe is the pressure in the inlet segment is smaller than Pout, so the fluid will experience back-flow. Backflow can occur in variety of possibilities, namely the fluid from inlet segment which has higher pressure will flow into inlet segment which has lower pressure. When this condition occurs, then the flow rate that reaches outlet point will not optimal. Similarly, for fluid flow in the production pipeline, if backflow occur, the fluid flow rate through separator will not optimal.

Pipeline System in Offshore Platform

A pipeline consists of several segments of pipe that has very complex and diverse forms. Figure 1 shows a scheme of pipeline surface that connects the fluid of some wellheads which are located at each platform to separator. The pipeline consists of several platforms, each of which has several wellheads.
Figure 1: Scheme of Pipeline Production System between Offshore Platform

Fluid flow that occurs comes from well which then when it reaches the surface of fluid will go to the wellhead. Fluid from each wellhead will be streamed into a pipe flow, starting point of the meeting is called gathering point fluid, fluid then flows into the header platform. Fluid derived from multiple platforms header will be channeled back into separator. This section serves as separator between phases of fluid.

More details of the pipeline production scheme that lies beneath surface to the surface is shown in Figure 2. In the Figure 2 shows that the fluid source is derived from 3 pieces of reservoirs. Fluid jetting processes that occur on the surface similar to those seen in Figure 1, it is from wellhead to separator. In an oil field, production processes often experience a variety of obstacles, one of them is bottleneck. This bottleneck can lead to the production of wells are not optimal.
Figure 2: Scheme of Pipeline Production in 1 Offshore Platform

Frequently Used Pipe Material

There are two types of pipe material which is frequently used either in oil and gas industry, power plant and other industries:

  1. Carbon Steel
Carbon Steel is one of pipe material and it is the most widespread of use in the oil and gas Industry, power plant and other industries. Almost all of these pipe materials have specifications issued by ASTM (American Society for Testing and Materials) and ASME (American Society of Mechanical Engineering.

There are three types of Carbon Steel are the most widely used, namely:
-          ASTM A106, This type has three grades, namely Grade A, B, and C. This grade refers to the amount of Tensile Strength materials. The amount of Tensile Strength of ASTM A106 are:
·         Grade A: 48 ksi
·         Grade B: 60 ksi
·         Grade C: 70 ksi
Among the third grade, pipe material which is usually used is ASTM A106 Grade B.

-          ASTM A 53: This material is also often used by elements of pipe that are coated by zinc (galvanized), or often used as an alternative for the A106 type. Grade A53 has three grades, namely Grade A, B, and C. In addition, A53 also has three types, namely:
·         Type E: Electric Resistance Weld
·         Type F: Furnace Butt Weld
·         Type S: Seamless
A53 Grade A and B have same Tensile Strength with ASTM A106 Grade A and B.

-          ASTM A 333: This material is often used on the fluid having low temperature, ranging from -50oF.


  1. Stainless Steel
Pipes are often categorized in Stainless Steel pipe is actually having the full name of austenitic stainless steel. But this pipe material is more often known by the name of Stainless Steel.

Stainless Steel has Grade 18, but type 304L is often used. In essence, Type 304 is the type that has low carbon content with the aim of strengthening the ability to withstand corrosion. With the addition of L letters behind his name, the 304L, it shows that this type has lower carbon content, much lower than just 304.

Thus, in application, there are two types of stainless steel that is commonly known and used in oil and gas industry and other industries as follow:
-          ASTM A312: This standard is used for pipe sizes under 8 inches.
-          ASTM A358: This standard is used for pipe sizes above 8 inches.

There are many other types of pipe material is quite often used beside two pipe materials above (carbon steel and stainless steel) such as:
-          Chrome-Moly Pipe: namely Chromium-Molybdenum Alloy Pipe, which consist of 10 grades, and refer to ASTM A335.
-          Nickel and Nickel Alloy Pipe: example that is widely used is Inconel, Incoloy and Monel.
-          Piping Cast iron, Cooper Piping
-          Plastic Pipe, concrete pipe.

Pipe Ends in Piping System

The pipe which has produced and used commonly in piping system has three types of pipe ends as follow:
  1. Plain Ends (PE)
Plain end is the end of the pipe which is cut square, often used for connections such as sockets weld, slip-on flanges and mechanical couplings.

  1. Beveled Ends (BE)
Beveled end is the end of the pipe which is cut to form bevel so it is suitable and often used for butt-weld connections.

  1. Threaded Ends (TE)
Threaded end is pipe which is created to have a threaded on the ends and it is used for the connection type Screw Joints. There are two options, whether threaded on both sides (TBE = Threaded Both Ends) or only on one side (TOE = threaded one end).